Chronic Fluoxetine Treatment Induces Brain Region-Specific Upregulation of Genes Associated with BDNF-Induced Long-Term Potentiation
نویسندگان
چکیده
Several lines of evidence implicate BDNF in the pathogenesis of stress-induced depression and the delayed efficacy of antidepressant drugs. Antidepressant-induced upregulation of BDNF signaling is thought to promote adaptive neuronal plasticity through effects on gene expression, but the effector genes downstream of BDNF has not been identified. Local infusion of BDNF into the dentate gyrus induces a long-term potentiation (BDNF-LTP) of synaptic transmission that requires upregulation of the immediate early gene Arc. Recently, we identified five genes (neuritin, Narp, TIEG1, Carp, and Arl4d) that are coupregulated with Arc during BDNF-LTP. Here, we examined the expression of these genes in the dentate gyrus, hippocampus proper, and prefrontal cortex after antidepressant treatment. We show that chronic, but not acute, fluoxetine administration leads to upregulation of these BDNF-LTP-associated genes in a brain region-specific pattern. These findings link chronic effects of antidepressant treatment to molecular mechanisms underlying BDNF-induced synaptic plasticity.
منابع مشابه
Doxepin improves stress-impaired long-term potentiation and gene expression of BDNF in the rat hippocampus
Introduction: Stress is associated with neurological and cognitive disorders. It has been suggested that doxepin, in addition to its influence on the content of neurotransmitters, has probable neuroprotective effects as well. Therefore, the aim of this study was to investigate the effects of doxepin on synaptic plasticity and brain-derived neurotrophic factor (BDNF) gene expression in the rat h...
متن کاملLong-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment.
Acute effects of neurotrophins on synaptic plasticity have recently received much attention, but the roles of these factors in regulating long-lasting changes in synaptic function remain unclear. To address this issue we studied the long-term (days to weeks) and short-term (minutes to hours) effects of brain-derived neurotrophic factor (BDNF) on excitatory synaptic transmission in autaptic cult...
متن کاملBrain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis.
Brain-derived neurotrophic factor (BDNF) is implicated in long-term synaptic plasticity in the adult hippocampus, but the cellular mechanisms are little understood. Here we used intrahippocampal microinfusion of BDNF to trigger long-term potentiation (BDNF-LTP) at medial perforant path--granule cell synapses in vivo. BDNF infusion led to rapid phosphorylation of the mitogen-activated protein (M...
متن کاملDifferential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain.
Antidepressants are known to increase brain derived neurotrophic factor (BDNF) mRNA in the adult rat brain. The BDNF gene has four differentially regulated promoters that generate four transcript forms, each containing a unique non-coding 5' exon (exon I-IV) and a common 3' coding exon. Using in situ hybridization with exon-specific riboprobes, we have examined whether diverse classes of antide...
متن کاملBrain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo.
Acute intrahippocampal infusion of brain-derived neurotrophic factor (BDNF) leads to long-term potentiation (BDNF-LTP) of synaptic transmission at medial perforant path-->granule cell synapses in the rat dentate gyrus. Endogenous BDNF is implicated in the maintenance of high-frequency stimulation-induced LTP (HFS-LTP). However, the relationship between exogenous BDNF-LTP and HFS-LTP is unclear....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007